Johnstone's Levels of Representation in Science Learning

Anggit Grahito Wicaksono
DOI: http://dx.doi.org/10.32699/spektra.v8i1.224

Abstract


Science education, beginning in elementary and junior high schools, should be able to meet the demand for grasping the notion of science. Junior high school science learning is an integrated science learning that comprises three branches, namely biology, physics, and chemistry. Understanding chemistry as a whole, which comprises three levels of representation, namely macroscopic, submicroscopic, and symbolic, is what learning chemistry entails. The purpose of this article is to review the literature on the three levels of representation theory and the relationship between the three levels of representation in learning. Johnstone's levels of representation have an impact on science learning by encouraging integration across multiple representation. This qualitative research is library research with books and other literature as the main object, such as scientific journals and scientific articles. The term represents has several meanings, including to symbolize, to recall thoughts through images or imagination, and to provide a depiction. Levels of representation refer to the use of three levels of representation to represent a phenomenon. The three levels of representation, namely the macroscopic, submicroscopic, and symbolic levels, are interconnected and contribute to students' ability to understand and comprehend abstract chemistry.

Keywords


Levels of Representation, Science Education, Chemistry Learning

Full Text:

PDF

References


Becker, N., Stanford, C., Towns, M., & Cole, R. (2015). Translating across macroscopic, submicroscopic, and symbolic levels: the role of instructor facilitation in an inquiry-oriented physical chemistry class. Chemistry Education Research and Practice, 16(4), 769–785.

bin Ibrahim, D. A., bin Othman, A., & bin Taib, O. (2017). ANALISIS KEPERLUAN PENGGUNAAN KERANGKA TIGA ARAS PEMBELAJARAN KIMIA DALAM PENGAJARAN MODEL ATOM BOHR. JuKu: Jurnal Kurikulum & Pengajaran Asia Pasifik, 4(1), 30–40.

Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2011). Facilitating high school students’ use of multiple representations to describe and explain simple chemical reactions. Teaching Science, 57(4), 13–20.

Chittleborough, G. D., & Treagust, D. F. (2009). Why models are advantageous to learning science. Educación Química, 20(1), 12–17.

Danandjaja, J. (2014). Metode Penelitian Kepustakaan. Antropologi Indonesia, 52. https://doi.org/10.7454/ai.v0i52.3318

Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: Diagrams. In Multiple representations in chemical education (pp. 169–191). Springer.

Davidowitz, B., Chittleborough, G., & Murray, E. (2010). Student-generated submicro diagrams: A useful tool for teaching and learning chemical equations and stoichiometry. Chemistry Education Research and Practice, 11(3), 154–164.

Dori, Y. J., & Hameiri, M. (2003). Multidimensional analysis system for quantitative chemistry problems: Symbol, macro, micro, and process aspects. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 40(3), 278–302.

Fauzi‟ah, L., & Padmaningrum, R. T. (2016). PENERAPAN PENDEKATAN KONSTRUKTIVIS BERDASARKAN INTEGRASI DIMENSI REPRESENTASI KIMIA TERHADAP MOTIVASI BELAJAR PESERTA DIDIK KELAS XI. Jurnal Pendidikan Sains Universitas Muhammadiyah Semarang, 4(2), 26–34.

Freire, M., Talanquer, V., & Amaral, E. (2019). Conceptual profile of chemistry: a framework for enriching thinking and action in chemistry education. International Journal of Science Education, 41(5), 674–692.

Gabel, D. (1999). Improving teaching and learning through chemistry education research: A look to the future. Journal of Chemical Education, 76(4), 548.

Gilbert, J. K., & Treagust, D. F. (2009). Introduction: Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In Multiple representations in chemical education (pp. 1–8). Springer.

Helsy, I., & Andriyani, L. (2017). Pengembangan bahan ajar pada materi kesetimbangan kimia berorientasi multipel representasi kimia. Jurnal Tadris Kimiya, 2(1), 104–108.

Hughes, J., Michell, P. A., & Ramson, W. S. (1992). The Australian Concise Oxford Dictionary. Oxford University Press, USA.

Jaber, L. Z., & BouJaoude, S. (2012). A macro–micro–symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, 34(7), 973–998.

Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83.

Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701.

Johnstone, A. H. (2000). The Practice of Chemical Education in Europe. Curricula and Policies, 1(1), 9–15.

Khasanah, B. N. (2016). PENERAPAN MODEL PENILIAN AUTENTIK KURIKULUM 2013 PADA MATA PELAJARAN IPA DI SMP N 2 GARUNG KABUPATEN WONOSOBO. SPEKTRA : Jurnal Kajian Pendidikan Sains, 2(01), 74. https://doi.org/10.32699/spektra.v2i01.11

Mocerino, M., Chandrasegaran, A. L., & Treagust, D. F. (2009). Emphasizing multiple levels of representation to enhance students’ understandings of the changes occurring during chemical reactions. Journal of Chemical Education, 86(12), 1433.

Nikat, R. F. (2021). Exploration Of Students’ Argumentation Skill Assisted Format Representation In Solving Electrical Concept. JURNAL PENDIDIKAN SAINS (JPS), 9(1), 42–50.

Oliva, J. M., del Mar Aragón, M., & Cuesta, J. (2015). The competence of modelling in learning chemical change: a study with secondary school students. International Journal of Science and Mathematics Education, 13(4), 751–791.

Rahma, F. N., & Kurniawan, E. S. (2021). Penilaian Kemampuan Representasi Grafik Mahasiswa pada Konsep Gerak Parabola Berbantuan Video Simulasi Software Modellus. SPEKTRA: Jurnal Kajian Pendidikan Sains, 7(2), 134. https://doi.org/10.32699/spektra.v7i2.215

Rahmawan, A. D. T. (2013). PENGARUH PENERAPAN MEDIA ANIMASI TERHADAP PERGESERAN KONSEP SISWA PADA KETIGA LEVEL REPRESENTATIF KIMIA (MAKROSKOPIS, SUBMIKROSKOPIS, DAN SIMBOLIK) PADA MATERI POKOK LARUTAN PENYANGGA UNTUK SISWA KELAS XI SMA N 1 KERTOSONO NGANJUK (THE EFFECT OF ANIMAT. Unesa Journal of Chemical Education, 2(2).

Smith, J. (2012). General, Organic, & Biological Chemistry. McGraw-Hill Higher Education.

Sopandi, W., Abidin, Z., & Maulani, H. C. (2009). Pembelajaran Kimia yang berorientasi pada struktur: Sebuah alternatif memperkenalkan ilmu kimia pada siswa SMP untuk mengatasi masalah miskonsepsi’. National Workshop on Chemistry Teaching at Junior High School, Indonesia University of Education.

Stoker, H. S. (2015). General, organic, and biological chemistry. Cengage Learning.

Taber, K. S. (2013). Modeling learners and learning in science education. Springer.

Talanquer, V. (2011). Macro, submicro, and symbolic: the many faces of the chemistry “triplet.” International Journal of Science Education, 33(2), 179–195.

Tasker, R., & Dalton, R. (2008). Visualizing the molecular world–Design, evaluation, and use of animations. In Visualization: Theory and practice in science education (pp. 103–131). Springer.

Taylor, S. J., Bogdan, R., & DeVault, M. (2015). Introduction to qualitative research methods: A guidebook and resource. John Wiley & Sons.

Thadison, F. C. (2011). Investigating macroscopic, submicroscopic, and symbolic connections in a college-level general chemistry laboratory. The University of Southern Mississippi.

Treagust, D. F. (2018). The importance of multiple representations for teaching and learning science. Education Research Highlights in Mathematics, Science and Technology.

Tsui, C.-Y., & Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biological education. In Multiple representations in biological education (pp. 3–18). Springer.

Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65–80.

Won, M., Yoon, H., & Treagust, D. F. (2014). Students’ learning strategies with multiple representations: Explanations of the human breathing mechanism. Science Education, 98(5), 840–866.

Yakmaci-Guzel, B., & Adadan, E. (2013). Use of Multiple Representations in Developing Preservice Chemistry Teachers’ Understanding of the Structure of Matter. International Journal of Environmental and Science Education, 8(1), 109–130.

Yildirir, H. E., & Demirkol, H. (2018). Identifying mental models of students for physical and chemical change. Journal of Baltic Science Education, 17(6), 986.




Copyright (c) 2022 Anggit Grahito Wicaksono

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

SPEKTRA: Jurnal Pendidikan dan Kajian Sains is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Number of P-ISSN = 2442-9910 and E-ISSN = 2548-642X.


SPEKTRA: Jurnal Kajian Pendidikan Sains Indexed by:

Hasil gambar untuk icmjeGambar terkaitGambar terkait
Gambar terkaitGambar terkaitGambar terkait
Gambar terkait